295 research outputs found

    Applying plant genomics to crop improvement

    Get PDF
    A report of the European Science Foundation-Wellcome Trust Conference on Crop Genomics, Trait Analysis and Breeding, Hinxton, UK, 8-11 November 2006

    Downregulation of Barley Regulator of Telomere Elongation Helicase 1 Alters the Distribution of Meiotic Crossovers

    Get PDF
    Programmed meiotic DNA double-strand breaks (DSBs), necessary for proper chromosomal segregation and viable gamete formation, are repaired by homologous recombination (HR) as crossovers (COs) or non-crossovers (NCOs). The mechanisms regulating the number and distribution of COs are still poorly understood. The regulator of telomere elongation helicase 1 (RTEL1) DNA helicase was previously shown to enforce the number of meiotic COs in Caenorhabditis elegans but its function in plants has been studied only in the vegetative phase. Here, we characterised barley RTEL1 gene structure and expression using RNA-seq data previously obtained from vegetative and reproductive organs and tissues. Using RNAi, we downregulated RTEL1 expression specifically in reproductive tissues and analysed its impact on recombination using a barley 50k iSelect SNP Array. Unlike in C. elegans, in a population segregating for RTEL1 downregulated by RNAi, high resolution genome-wide genetic analysis revealed a significant increase of COs at distal chromosomal regions of barley without a change in their total number. Our data reveal the important role of RTEL1 helicase in plant meiosis and control of recombination

    The value of genotype-specific reference for transcriptome analyses in barley

    Get PDF
    It is increasingly apparent that although different genotypes within a species share “core” genes, they also contain variable numbers of “specific” genes and different structures of “core” genes that are only present in a subset of individuals. Using a common reference genome may thus lead to a loss of genotype-specific information in the assembled Reference Transcript Dataset (RTD) and the generation of erroneous, incomplete or misleading transcriptomics analysis results. In this study, we assembled genotype-specific RTD (sRTD) and common reference–based RTD (cRTD) from RNA-seq data of cultivated Barke and Morex barley, respectively. Our quantitative evaluation showed that the sRTD has a significantly higher diversity of transcripts and alternative splicing events, whereas the cRTD missed 40% of transcripts present in the sRTD and it only has ∼70% accurate transcript assemblies. We found that the sRTD is more accurate for transcript quantification as well as differential expression analysis. However, gene-level quantification is less affected, which may be a reasonable compromise when a high-quality genotype-specific reference is not available

    Genomic Selection in multi-environment crop trials

    Get PDF
    Genomic selection in crop breeding introduces modeling challenges not found in animal studies. These include the need to accommodate replicate plants for each line, consider spatial variation in field trials, address line by environment interactions, and capture nonadditive effects. Here, we propose a flexible single-stage genomic selection approach that resolves these issues. Our linear mixed model incorporates spatial variation through environment-specific terms, and also randomization-based design terms. It considers marker, and marker by environment interactions using ridge regression best linear unbiased prediction to extend genomic selection to multiple environments. Since the approach uses the raw data from line replicates, the line genetic variation is partitioned into marker and nonmarker residual genetic variation (i.e., additive and nonadditive effects). This results in a more precise estimate of marker genetic effects. Using barley height data from trials, in 2 different years, of up to 477 cultivars, we demonstrate that our new genomic selection model improves predictions compared to current models. Analyzing single trials revealed improvements in predictive ability of up to 5.7%. For the multiple environment trial (MET) model, combining both year trials improved predictive ability up to 11.4% compared to a single environment analysis. Benefits were significant even when fewer markers were used. Compared to a single-year standard model run with 3490 markers, our partitioned MET model achieved the same predictive ability using between 500 and 1000 markers depending on the trial. Our approach can be used to increase accuracy and confidence in the selection of the best lines for breeding and/or, to reduce costs by using fewer markers

    An evaluation of genotyping by sequencing (GBS) to map the <em>Breviaristatum-e (ari-e)</em> locus in cultivated barley

    Get PDF
    ABSTRACT: We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar ‘Golden Promise’ (ari-e.GP/Vrs1) and the six-rowed cultivar ‘Morex’ (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait Loci (QTL), the first in a region encompassing the spike architecture gene Vrs1 on chromosome 2H, the second in an uncharacterised centromeric region on chromosome 3H, and the third in a region of chromosome 5H coinciding with the previously described dwarfing gene Breviaristatum-e (Ari-e). BACKGROUND: Barley cultivars in North-western Europe largely contain either of two dwarfing genes; Denso on chromosome 3H, a presumed ortholog of the rice green revolution gene OsSd1, or Breviaristatum-e (ari-e) on chromosome 5H. A recessive mutant allele of the latter gene, ari-e.GP, was introduced into cultivation via the cv. ‘Golden Promise’ that was a favourite of the Scottish malt whisky industry for many years and is still used in agriculture today. RESULTS: Using GBS mapping data and phenotypic measurements we show that ari-e.GP maps to a small genetic interval on chromosome 5H and that alternative alleles at a region encompassing Vrs1 on 2H along with a region on chromosome 3H also influence plant height. The location of Ari-e is supported by analysis of near-isogenic lines containing different ari-e alleles. We explored use of the GBS to populate the region with sequence contigs from the recently released physically and genetically integrated barley genome sequence assembly as a step towards Ari-e gene identification. CONCLUSIONS: GBS was an effective and relatively low-cost approach to rapidly construct a genetic map of the GPMx population that was suitable for genetic analysis of row type and height traits, allowing us to precisely position ari-e.GP on chromosome 5H. Mapping resolution was lower than we anticipated. We found the GBS data more complex to analyse than other data types but it did directly provide linked SNP markers for subsequent higher resolution genetic analysis

    Grain dispersal mechanism in cereals arose from a genome duplication followed by changes in spatial expression of genes involved in pollen development

    Get PDF
    KEY MESSAGE: Grain disarticulation in wild progenitor of wheat and barley evolved through a local duplication event followed by neo-functionalization resulting from changes in location of gene expression. ABSTRACT: One of the most critical events in the process of cereal domestication was the loss of the natural mode of grain dispersal. Grain dispersal in barley is controlled by two major genes, Btr1 and Btr2, which affect the thickness of cell walls around the disarticulation zone. The barley genome also encodes Btr1-like and Btr2-like genes, which have been shown to be the ancestral copies. While Btr and Btr-like genes are non-redundant, the biological function of Btr-like genes is unknown. We explored the potential biological role of the Btr-like genes by surveying their expression profile across 212 publicly available transcriptome datasets representing diverse organs, developmental stages and stress conditions. We found that Btr1-like and Btr2-like are expressed exclusively in immature anther samples throughout Prophase I of meiosis within the meiocyte. The similar and restricted expression profile of these two genes suggests they are involved in a common biological function. Further analysis revealed 141 genes co-expressed with Btr1-like and 122 genes co-expressed with Btr2-like, with 105 genes in common, supporting Btr-like genes involvement in a shared molecular pathway. We hypothesize that the Btr-like genes play a crucial role in pollen development by facilitating the formation of the callose wall around the meiocyte or in the secretion of callase by the tapetum. Our data suggest that Btr genes retained an ancestral function in cell wall modification and gained a new role in grain dispersal due to changes in their spatial expression becoming spike specific after gene duplication. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00122-022-04029-8

    Evidence and evolutionary analysis of ancient whole-genome duplication in barley predating the divergence from rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Well preserved genomic colinearity among agronomically important grass species such as rice, maize, Sorghum, wheat and barley provides access to whole-genome structure information even in species lacking a reference genome sequence. We investigated footprints of whole-genome duplication (WGD) in barley that shaped the cereal ancestor genome by analyzing shared synteny with rice using a ~2000 gene-based barley genetic map and the rice genome reference sequence.</p> <p>Results</p> <p>Based on a recent annotation of the rice genome, we reviewed the WGD in rice and identified 24 pairs of duplicated genomic segments involving 70% of the rice genome. Using 968 putative orthologous gene pairs, synteny covered 89% of the barley genetic map and 63% of the rice genome. We found strong evidence for seven shared segmental genome duplications, corresponding to more than 50% of the segmental genome duplications previously determined in rice. Analysis of synonymous substitution rates (Ks) suggested that shared duplications originated before the divergence of these two species. While major genome rearrangements affected the ancestral genome of both species, small paracentric inversions were found to be species specific.</p> <p>Conclusion</p> <p>We provide a thorough analysis of comparative genome evolution between barley and rice. A barley genetic map of approximately 2000 non-redundant EST sequences provided sufficient density to allow a detailed view of shared synteny with the rice genome. Using an indirect approach that included the localization of WGD-derived duplicated genome segments in the rice genome, we determined the current extent of shared WGD-derived genome duplications that occurred prior to species divergence.</p
    corecore